tDCS modulates cortical nociceptive processing but has little to no impact on pain perception.

نویسندگان

  • Kristin Ihle
  • Rea Rodriguez-Raecke
  • Kerstin Luedtke
  • Arne May
چکیده

Transcranial direct current stimulation (tDCS) effectively modulates cortical excitability. Several studies suggest clinical efficacy in chronic pain syndromes. However, little is known regarding its effects on cortical pain processing. In this double-blind, randomized, cross-over, sham controlled study, we examined the effects of anodal, cathodal, and sham stimulation of the left motor cortex in 16 healthy volunteers using functional imaging during an acute heat pain paradigm as well as pain thresholds, pain intensity ratings, and quantitative sensory testing. tDCS was applied at 1 mA for 15 minutes. Neither cathodal nor anodal tDCS significantly changed brain activation in response to nociceptive stimulation when compared with sham stimulation. However, contrasting the interaction of stimulation modes (anodal/cathodal) resulted in a significant decrease of activation in the hypothalamus, inferior parietal cortex, inferior parietal lobule, anterior insula, and precentral gyrus, contralateral to the stimulation site after anodal stimulation, which showed the opposite behavior after cathodal stimulation. Pain ratings and heat hyperalgesia showed only a subclinical pain reduction after anodal tDCS. Larger-scale clinical trials using higher tDCS intensities or longer durations are necessary to assess the neurophysiological effect and subsequently the therapeutic potential of tDCS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No Effect of a Single Session of Transcranial Direct Current Stimulation on Experimentally Induced Pain in Patients with Chronic Low Back Pain – An Exploratory Study

Transcranial direct current stimulation (tDCS) has been shown to modulate cortical excitability. A small number of studies suggested that tDCS modulates the response to experimental pain paradigms. No trials have been conducted to evaluate the response of patients already suffering from pain, to an additional experimental pain before and after tDCS. The present study investigated the effect of ...

متن کامل

Polarity-independent effects of transcranial direct current stimulation over the bilateral opercular somatosensory region: a magnetoencephalography study

The opercular somatosensory region (OP) plays an indispensable role in pain perception. In the present study, we investigated the neurophysiological effects of transcranial direct current stimulation (tDCS) over the OP. Somatosensory-evoked magnetic fields following noxious intraepidermal electrical stimulation to the left index finger (pain-SEFs) were recorded before and after tDCS with a sing...

متن کامل

Role of hypocretin-1,2 (orexin A and B) in pain perception

Hypocretins/orexins are primary excitatory neuropeptides located exclusively in neurons of the lateral hypothalamic area, which send projections to most monoaminergic nuclei. It has been reported that i.c.v. injection of hypocretin 1 (orexin A) enhances wakefulness in rats and mice. The present work was carried out to examine the roles of hypocretins in nociception in mice. The presence of robu...

متن کامل

Pressure Pain Thresholds Increase after Preconditioning 1 Hz Repetitive Transcranial Magnetic Stimulation with Transcranial Direct Current Stimulation

BACKGROUND The primary motor cortex (M1) is an effective target of non-invasive cortical stimulation (NICS) for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. OBJECTIVE Here we investigate whether transcranial direct current stimulation (tDCS) primed 1 Hz repetitive transcranial magnetic s...

متن کامل

the National Academy of Sciences colloquium ‘ ‘ The Neurobiology of Pain , ’ ’ held

Anatomical, physiological, and lesion data implicate multiple cortical regions in the complex experience of pain. These regions include primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and regions of the frontal cortex. Nevertheless, the role of different cortical areas in pain processing is controversial, particularly that of primary somatosensory cortex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pain

دوره 155 10  شماره 

صفحات  -

تاریخ انتشار 2014